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Excessive accumulation of carcass fat in farm animals, including fish, has a significant impact on meat quality and on the cost
of feeding. Similar to farmed animals and humans, the liver can be considered one of the most important organs involved in
lipid metabolism in rainbow trout (Oncorhynchus mykiss). RNA-seq based whole transcriptome sequencing was performed to
liver tissue of rainbow trout with high and low carcass fat content in this study. In total 1,694 differentially expressed transcripts
were identified, including many genes involved in lipid metabolism, such as L-FABP, adiponectin, PPAR-𝛼, PPAR-𝛽, and IGFBP1a.
Evidence presented in this study indicated that lipidmetabolic process in liver may be related to the difference of carcass fat content.
The relevance of PPAR-𝛼 and PPAR-𝛽 as molecular markers for fat storage in liver should be worthy of further investigation.

1. Introduction

Excessive fat accumulation in farm animals, including fish,
has a significant impact on meat quality and the cost of feed-
ing [1, 2]. The management of fat deposition in farm animals
has drawn increasing attention from a growing number of
researchers and the public. As we know, body fatness is a
heritable, quantitative trait in rainbow trout (Oncorhynchus
mykiss), and genetic selection has been successfully used to
change the muscle fat content in rainbow trout [3, 4]. A
good understanding of the physiological mechanisms of fat
deposition could be essential to genetic enhancement of the
production performance of rainbow trout.

Rainbow trout originated in North America and was
introduced to China from the Democratic People’s Republic
of Korea (North Korea) in 1959 [5, 6]. According to statistical
data provided by the Food and Agriculture Organization
(FAO), rainbow trout is the major cold-water fish farmed
in China, and the production amount was approximately
23,000 tons in 2013 [7]. Additionally, in many research areas,
such as immunology and environmental carcinogenesis, this

organism has been used as a model animal [8]. The draft
genomehas been sequenced and several geneticmaterials and
genomics tools have been developed for research [9], facili-
tating our understanding of the whole genomic physiological
mechanisms of the fatness trait in rainbow trout.

Similar to farm animals and humans, lipogenesis, triglyc-
eride accumulation, and metabolic homeostasis occur essen-
tially in the liver of rainbow trout [10]. The liver can be
considered one of the most important organs involved in
lipid metabolism, and the different expression of functional
genes involved in lipid synthesis, degradation, transporta-
tion, and storage has been analyzed in the livers of trout
strains divergently selected for muscle fat content [11–13].
The research showed that genes involved in lipid metabolism
might be influenced by divergent selection and lead to a
different model of fat storage in the genetically selected lean
and fat trout strains [13]. Another later study indicated that
lipid and glucose metabolism was regulated by insulin in two
experimental rainbow trout lines [14]. In addition, some evi-
dence has suggested that TOR signaling pathway-associated
lipogenesis could be overactivated and the utilization of
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glucose in the liver might be also improved by the genetic
selection [11, 15, 16].

In the present study, RNA-seq based transcriptome
sequencing was performed to liver tissue of rainbow trout
with extremely high and low carcass fat content. The objec-
tives were to identify the differential expressed transcripts
and get meaningful information about the molecular mech-
anism of fat deposition. The results may be helpful in deter-
miningmore powerful target genes associatedwith carcass fat
content and would potentially be applied in the development
of molecular genetic markers for fatness traits in rainbow
trout.

2. Materials and Methods

2.1. Experimental Animals and Sampling. In this study, a
freshwater strain of rainbow trout, selected for large-size
body weight and measurement traits using family based
BLUP method, was used as experimental material [17]. The
breeding program was performed at the Bohai cold-water
fish experimental station, located near Jingbo Lake (lati-
tude 44.02∘N, longitude 128.74∘E), in Heilongjiang Province,
China. Water was supplied to the tanks and ponds at the
Bohai experimental station using natural flowing spring
water (5.2–18.0∘C) with a water flow of 20–30 L/sec and a
dissolved oxygen concentration ranging from 7 to 11mg/L.
Seventy-five full-sibling families were established using 75
male and 75 female fish for each generation based on passive
integrated transponder (PIT) tag. After each family was
separately hatched from eggs, the fish absorbed their yolk
sacs (30 to 35 days) before swimming up and beginning to
feed on a commercial trout fry diet. Each candidate family
was then reared separately in a tank (1-meter diameter, 0.5-
meter water depth, average water temperature ranging from
approximately 6.5∘C to 12∘C, and water flow at 6 to 8 L/min)
for 10 months until reaching a size of >50 g. Fifty fish with
no deformities were randomly selected from each tank with
PIT tags and were then deposited together in cemented
pools (5-meter width, 30-meter length, and 0.7-meter water
depth) for one year. The fish beyond two years of age were
cultured in earth ponds (15-meter width, 120-meter length,
and 0.8-meter water depth). It takes approximately 3–3.5
years to reach sexual maturity for rainbow trout at the Bohai
station. All of the fish were fed according to the feeding
program for trout from BioMar. All of the animal work
was conducted according to the guidelines for the care and
use of experimental animals established by the Ministry of
Science and Technology of China (document number: 2006-
398) and was approved by the Academic Ethics Committee of
Heilongjiang River Fishery Research Institute.

Before the traits were measured, the fish were anaes-
thetized using 0.5mg/L 2-phenoxyethanol (C

8
H
10
O
2
) to

avoid injury from handling. Each fish was measured for
carcass fat content using a Fish Fatmeter (Distell Company,
Old Levenseat, Scotland, UK) (Model FFM-692; calibration:
TROUT-2; representing fat content of whole carcass includ-
ing belly cavity and fish roe) [18], for body weight using
electronic scales (0.1 g), and for total length using Vernier

calipers (0.1 cm); each fish was sexed using secondary sexual
characteristics, and at the same time, body measurement
traits were assessed. All of phenotypic records of carcass
fat content related to 1,422 individuals at 2.5 years of age
were used for the calculation of the population mean (7.14 ±
1.52%). Six female fish were used for transcriptome sequenc-
ing. To ensure that every individual within and between
the high and low carcass fat content groups used for RNA
sequencing had the same genetic background but no direct
kinship, a coancestry analysis was performed based on PIT
tag ID of the individuals and the pedigree records. Three
female rainbow trout with low carcass fat content (4.20 ±
0.31%) and the same number of high carcass fat content
female ones (11.27 ± 0.31%) were randomly selected from
the population for transcriptome sequencing. There were
extremely significant differences (approximately 3-fold) in
carcass fat content (𝑝 < 0.001) but no significant difference
in body weight between the two groups (𝑝 > 0.05).

2.2. Total RNA Extraction, RNA-Seq Library Construction,
and Sequencing. The livers of three low carcass fat content
female fish and three high carcass fat content female fish
were sampled under RNAse-free conditions to perform RNA
extraction for sequencing. All of the tissue samples were
frozen in liquid nitrogen and stored at −80∘C until analysis.
Total RNA was isolated using Trizol reagent (Invitrogen,
Carlsbad, CA, USA), and RNA degradation and contami-
nation were monitored on 1% agarose gels. Then, the clus-
tering and sequencing were performed by the Experimental
Department of Novogene Ltd. The clustering of the index-
coded samples was performed on a cBot Cluster Generation
System using a TruSeq SR Cluster Kit v3-cBot-HS (Illumina),
according to the manufacturers’ instructions. After cluster
generation, the library preparations were sequenced on an
Illumina HiSeq 2500 platform, and 125 bp paired-end reads
were generated.

2.3. RNA-Seq Data Processing, Annotation, and Differential
Expression Identification. Raw counts of RNA-seq reads for
each transcript and in each sample were derived and normal-
ized to fragments per kilobase of exon per million fragments
mapped reads (FPKM). All transcriptome data from six
individuals were aligned to the Oncorhynchus mykissmRNA
dataset (Oncorhynchus mykiss genome project accession via
http://www.genoscope.cns.fr/trout/) using the TopHat [19],
and the expression of trout transcripts was evaluated using
the software Cufflinks [20]; TopHat and Cufflinks were
performed with default parameters. Differentially expressed
transcripts (fold changes≥2 or fold changes≤0.5 and adjusted
p value ≤0.01) between high and low carcass fat content fish
were identified with the Cufflink package based on FPKM;
visualization of transcripts expression was performed using
R software [21]. GO terms were assigned to the transcripts
according to their corresponding homologs in the trout
mRNA database (http://www.genoscope.cns.fr/trout/). The
GO annotation result was visualized in WEGO [22]. Lastly,
the GO terms enrichment analysis for the differentially
expressed transcripts was carried out by topGO package [23].



International Journal of Genomics 3

Table 1: The information of the primer pairs used to analyze gene expression by real-time quantitative RT-PCR.

Standard nomenclature∗ Primer Product size (bp)

GSONMT00021034001 5󸀠 CTGGGCACCACCTACTCAT 3󸀠 110
5󸀠 GTGTCTGTGAAGGCAACG 3󸀠

GSONMT00026574001 5󸀠 AAACTGCTGGTGAAGACG 3󸀠 136
5󸀠 TGTTGAGGACAAAGAGGG 3󸀠

GSONMT00028411001 5󸀠 CCCTGGGCGTACAGTTTGAC 3󸀠 188
5󸀠 CTTGGCATCCACTCCATCGT 3󸀠

GSONMT00029574001 5󸀠 TTCAAGGGTCGTGGGAGA 3󸀠 159
5󸀠 CGGAGGGTGTTGGAAGTG 3󸀠

GSONMT00032762001 5󸀠 AGCAGAACGGCAATGACT 3󸀠 181
5󸀠 TCCTGGACGCTGGAGAAT 3󸀠

GSONMT00051137001 5󸀠 GGAGCCTGGTTGTGGATG 3󸀠 286
5󸀠 GCTGTGGCCGTGGAGATA 3󸀠

GSONMT00051158001 5󸀠 CCTGGCTCTGTTTGTGGC 3󸀠 137
5󸀠 TGTCGTCTGGGTGGTTGG 3󸀠

GSONMT00054447001 5󸀠 CTGGAGTAAAGATGGGTGAC 3󸀠 169
5󸀠 GTCCTGTTCTGGGATTGG 3󸀠

GSONMT00060652001 5󸀠 CCGACCACCAACCCTAAT 3󸀠 272
5󸀠 CACTGGCAGCGGTAGAAC 3󸀠

GSONMT00062349001 5󸀠 GCCTGGATGAGAATGA 3󸀠 335
5󸀠 GATACCGCAGGACAAT 3󸀠

GSONMT00064682001 5󸀠 CCTACTGAGCCCATTCCT 3󸀠 360
5󸀠 ATGGAGACTAAGCGAGGC 3󸀠

GSONMT00070501001 5󸀠 CGCCCACCTCTAAACAAGCC 3󸀠 459
5󸀠 GCAGCGTCATCCAGCCCATC 3󸀠

GSONMT00077785001 5󸀠 CGTGCCCATCCGTTTCAATA 3󸀠 137
5󸀠 CCCGAGCATCTTTGGTGTAG 3󸀠

GSONMT00082167001 5󸀠 ACCGTGGGAGTAGTTCTTGC 3󸀠 425
5󸀠 TAGACACCGTTGTAGACCAG 3󸀠

EF1𝛼 5󸀠 TCCTCTTGGTCGTTTCGCTG 3󸀠 159
5󸀠 ACCCGAGGGACATCCTGTG 3󸀠

∗Note: the standard nomenclature for rainbow trout according to GBrowse-2.54 of rainbow trout genome project database.

2.4. Validation of Differentially Expressed Genes by Real-
TimeQuantitative RT-PCR. Fourteen differentially expressed
genes identified by the transcriptome sequencing were val-
idated by real-time quantitative RT-PCR, using the same
fish sample, and EF1𝛼 was used as a reference control [11].
Real-time RT-PCR was performed using SYBR (R) GREEN
I NUCLEIC A (Life Technologies) on the LightCycler 480II
Real-Time System (Roche, Switzerland). The reaction was
performed using the following conditions: denaturation at
95∘C for 3min, followed by 40 cycles of amplification (95∘C
for 30 s, 60∘C for 30 s, and 60∘C for 45 s). Relative expres-
sion was calculated using the delta-delta-Ct method; primer
sequences can be found in Table 1.

3. Results

3.1. Sequencing of Liver Transcriptome in Rainbow Trout. The
liver transcriptome expression of six fish at 2.5 years was
analyzed by RNA sequencing. After removing low-quality

reads, adaptor, and barcode sequences, nearly 35 million
clean reads for each individual were obtained; the descriptive
statistics of the RNA-seq reads for each individual are shown
in Table 2. All of the raw data were submitted to the NCBI
database (accession numbers SRX1067664 and SRR2072562).

3.2. Gene Functional Annotation for the Differentially
Expressed Transcripts. A total of 1,694 differentially ex-
pressed transcripts were identified from liver tissue between
the high and low carcass fat content rainbow trout (Figure 1).
The standard nomenclature, expression, and gene annotation
for the differentially expressed transcripts were shown in
Table S1 in Supplementary Material available online at
http://dx.doi.org/10.1155/2016/7281585. Among these trans-
cripts, 912 transcripts were highly expressed in high carcass
fat content fish, including many key factors of lipogenesis
and fat deposition in rainbow trout, such as peroxisome
proliferator activated receptor alpha (PPAR-𝛼), PPAR-𝛽,
insulin-like growth factor binding protein 1a (IGFBP1a),
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Color key
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L2 L3 L1 H2 H3 H1

Figure 1: Cluster image of 1,694 significant differentially expressed transcripts between the high and low carcass fat content rainbow trout. A
total of 1,694 differentially expressed transcripts were identified with Cufflink package based on FPKM: 912 were highly expressed in rainbow
trout with high carcass fat content, and 782 showed higher expression level in those fish with low carcass fat content. H1, H2, andH3 represent
the first, second, and third fish in the high carcass fat content group, respectively; and L1, L2, and L3 represent the first, second, and third fish
in the low carcass fat content group, respectively. Colored bars indicate relative expression levels. Transcripts expressed at higher levels were
assigned red, while transcripts expressed at low levels were assigned blue.
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Table 2: The descriptive statistics of the raw RNA-seq datasets for all of the six individuals sequenced in the present study.

Sample Raw reads Clean reads Clean bases Error (%) Q20 (%) Q30 (%) GC (%)
H1 1 17429887 16907974 2.11G 0.03 96.27 92.45 50.25
H1 2 17429887 16907974 2.11G 0.04 93.31 87.75 50.2
H2 1 18051923 17574994 2.2G 0.03 96.18 92.3 50.37
H2 2 18051923 17574994 2.2G 0.04 93.56 88.15 50.33
H3 1 16777106 16241788 2.03G 0.03 96.16 92.23 50.07
H3 2 16777106 16241788 2.03G 0.04 93.33 87.71 50.04
L1 1 18535584 17957775 2.24G 0.03 96.41 92.72 49.7
L1 2 18535584 17957775 2.24G 0.04 93.97 88.84 49.66
L2 1 18083733 17537741 2.19G 0.03 96.26 92.43 49.72
L2 2 18083733 17537741 2.19G 0.04 94.03 88.89 49.68
L3 1 19420929 18772655 2.35G 0.03 96.24 92.41 50.08
L3 2 19420929 18772655 2.35G 0.04 93.66 88.3 50.05
Notes: sample name: H1 is the first fish in high carcass fat content group and so on; L1 is the first fish in high carcass fat content group and so on; H1 1 is the
left-end reads, H1 2 is the right-end reads; the descriptive statistics for the individual H1 is the sum of H1 1 and H1 2 and so on.
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Figure 2: GO annotation results of the differently expressed transcripts between the high and low carcass fat content rainbow trout.

and fatty acid-binding protein 10-A, liver (L-FABP). At the
same time, 782 transcripts showed higher expression levels
in low carcass fat content fish, including many transcription
factors with important effects on growth, differentiation,
lipid metabolism, carbohydrate metabolism, and immunity,
for example, growth hormone receptor isoform 1 (GHR1),
insulin-induced gene 1 (INSIG1), and heat shock 70 kDa
protein (HSP70).

GO annotations provided in the trout mRNA data-
base (Oncorhynchus mykiss genome project accession via

http://www.genoscope.cns.fr/trout/) were used in this study.
At least one in three main categories of GO terms (biological
process, molecular function, and cellular component) was
assigned to all 1,694 differentially expressed transcripts and
then was classified into different functional categories, as
shown in Figure 2.The results showed that metabolic process
(GO: 0008152) was themost abundant group in the biological
process category, followed by cellular process (GO: 0009987),
while biological regulation (GO: 0065007) and establishment
of localization (GO: 0051234) were also common, consistent
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with the central role of liver in the basal and intermediary
metabolism. In the molecular function category, the most
abundant group was binding (GO: 0005488), and the second
most abundant one was catalytic activity (GO: 0003824).
There were also transcripts classified into specific groups,
such as transporter activity (GO: 0005215), molecular trans-
ducer activity (GO: 0060089), enzyme regulator activity (GO:
0030234), and transcription regulator activity (GO: 0030528),
indicating that many genes were involved in important phys-
iological functions of synthesis, transport, and catabolism
in the livers of rainbow trout. In the cellular component
category, the most abundant groups were related to cell (GO:
0005623), cell part (GO: 0044464), organelle (GO: 0043226),
organelle part (GO: 0044422), and macromolecular complex
(GO: 0032991).

3.3. GO Enrichment Analysis for Differentially Expressed Tran-
scripts. The results of GO enrichment analysis for 1,694 dif-
ferentially expressed transcripts were shown inTable S2 in the
Supplementary Material. GO terms in the biological process
category were highly enriched, with 84 GO terms attaining
significant levels, including GO: 0044710 (single-organism
metabolic process), GO: 0055114 (oxidation-reduction pro-
cess), GO: 0006520 (cellular amino acid metabolic process),
GO: 0006629 (lipid metabolic process), GO: 0006006 (glu-
cose metabolic process), GO: 0019318 (hexose metabolic
process), GO: 0005996 (monosaccharide metabolic process),
and GO: 0006541 (glutamine metabolic process), consistent
with the physiological functions of the livers of rainbow trout.
At the same time, the GO terms in the molecular function
category were also highly enriched, and 88 GO terms reached
the significant level, including GO: 0016491 (oxidoreductase
activity), GO: 0016298 (lipase activity), GO: 0048037 (cofac-
tor binding), GO: 0050662 (coenzyme binding), GO: 0005319
(lipid transporter activity), and GO: 0004465 (lipoprotein
lipase activity), indicating that the lipid metabolism mode
might be different between high and low carcass fat content
fish.

Moreover, we analyzed the expression of transcripts
grouped as “lipid metabolic process” GO term (0006629)
based on the transcriptome data, revealing that 52 of 372
transcripts (14%) were differentially expressed between the
high and low carcass fat content fish groups (Figure 3),
providing meaningful information about the difference in
lipid metabolism between the two groups. The standard
nomenclature, expression, and gene annotation for the 52
transcripts were shown in Table S3.

3.4. Validation of Differentially Expressed Genes by Real-Time
Quantitative RT-PCR. To validate the results of differentially
expressed genes in transcriptome sequencing, we performed
real-time quantitative RT-PCR for 14 differentially expressed
genes involved in lipid metabolism, growth regulation, and
other important functions. Among these genes, L-FABP,
putative I-FABP, IGFBP1a, insulin-like growth factor bind-
ing protein, acid labile subunit (IGFBP-ALS), adiponectin,
cytochrome P450, PPAR-𝛼, PPAR-𝛽, and lipopolysaccharide-
binding protein (LBP) were highly expressed in the high

carcass fat content fish group,while heat shock 70 kDaprotein
(HSP70), acetyl-CoA acetyltransferase, cytosolic (ACAT2),
StAR-related lipid transfer protein (SATRT), GHR1, and
INSIG1 showed lower expression level in the high carcass
fat content fish group. The results of differentially expressed
genes identified by real-time quantitative RT-PCR had good
consistency with the transcriptome data. For transcriptome
data, the evaluation criteria for differentially expressed genes
between the high and low carcass fat content fish groups
were fold changes ≥ 2 or fold changes ≤ 0.5 and adjusted
𝑝 value ≤ 0.01, while for real-time quantitative RT-PCR we
used Student’s t-test (𝑝 < 0.05). All fourteen genes detected
by real-time RT-PCR reached significance. The fold change
results of RNA sequencing and real-time RT-PCR for 14
differentially expressed genes were compared in Table 3.

4. Discussion

As is well known, the Chinese believe that the best tasting and
most nutritious aquatic animals must be alive immediately
prior to cooking, and they eat whole fish from beginning to
end (with head and tail); thus, the fat content of the whole
carcass of the fish body is an economically important trait in
China. Fatty acid de novo synthesis in rainbow trout occurs
mainly in the liver [10, 24], and several studies have explored
the correlations between gene expression in liver tissues and
lipid metabolism [25–27].

4.1. Differentially Expressed Functional Genes Involved in Lipid
Metabolism and Energy Balance. Among the 1,694 differ-
entially expressed genes, L-FABP was detected to be more
than 30-fold higher expressed in the fat group than in the
lean group by both transcriptome sequencing and real-time
RT-PCR methods. Liver type fatty acid-binding protein is a
functional protein with a small molecular weight that belongs
to a superfamily of lipid-binding proteins and participates
in intracellular fatty acid transportation in human, farm
animals, birds, and fish [28–30]. Higher expression of the L-
FABP gene in the livers of the high carcass fat content group
than in the low carcass fat content group might be the result
of increased fatty acid transportation into white muscle, skin,
and other parts, leading to more fat deposition in the whole
carcass. The results indicated that the expression of the L-
FABP gene should have a positive effect on fat deposition in
the rainbow trout.

The PPAR gene superfamily belongs to the nuclear
receptor superfamily, including three different genes—PPAR-
𝛼, PPAR-𝛽, and PPAR-𝛾. PPARs are a type of ligand-activated
transcription factors that control gene expression by binding
to specific response elements (PPREs) within promoters [31].
PPARs play critical physiological roles as lipid sensors and
regulators of lipid metabolism and can transactivate multiple
target genes and interact with other transcription factors
involved in lipid metabolic pathways [32, 33]. In the current
study, PPAR-𝛼 and PPAR-𝛽were expressed significantlymore
in the high carcass fat content fish group than in the low
carcass fat content fish group by transcriptome sequencing
and as validated by real-time RT-PCR. Our results regarding
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Figure 3: Heat map showing the expression profiles of differentially significant transcripts involved in lipid metabolic processes. A total of
52 of 372 transcripts involved in lipid metabolic processes (GO: 0006629) were differentially expressed between the high and low carcass fat
content fish groups. H1, H2, and H3 represent the first, second, and third fish in the high carcass fat content group, respectively; L1, L2, and
L3 represent the first, second, and third fish in the low carcass fat content group, respectively. Colored bars indicate relative expression levels.
Transcripts expressed at higher levels were assigned blue, while transcripts expressed at low levels were assigned white.
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Table 3: Comparison of fold differences in 14 differentially expressed genes detected by transcriptome sequencing and real-time RT-PCR
analyses.

Standard nomenclature∗ Fold change by real-time
RT-PCR Fold change by RNA-seq Gene annotation

GSONMT00021034001 0.25 ± 0.03 0.18 Heat shock 70 kDa protein

GSONMT00026574001 1.40 ± 0.12 2.70 Lipopolysaccharide-binding protein/bactericidal
permeability-increasing protein

GSONMT00028411001 4.84 ± 0.35 4.44 Fatty acid-binding protein, intestinal putative mRNA
GSONMT00029574001 36.83 ± 2.30 17.70 Cytochrome P450
GSONMT00032762001 33.50 ± 1.95 35.73 Fatty acid-binding protein 10-A, liver
GSONMT00051137001 6.05 ± 0.50 4.27 Insulin-like growth factor binding protein 1a
GSONMT00051158001 1.50 ± 0.15 3.03 Peroxisome proliferator activated receptor alpha
GSONMT00054447001 0.18 ± 0.04 0.18 Acetyl-CoA acetyltransferase, cytosolic
GSONMT00060652001 2.22 ± 0.15 2.66 Peroxisome proliferator activated receptor beta
GSONMT00062349001 0.13 ± 0.02 0.19 StAR-related lipid transfer protein

GSONMT00064682001 2.80 ± 0.15 2.76 Insulin-like growth factor binding protein, acid labile
subunit

GSONMT00070501001 0.26 ± 0.03 0.11 Growth hormone receptor isoform 1
GSONMT00077785001 3.22 ± 0.19 17.14 Adiponectin
GSONMT00082167001 0.71 ± 0.05 0.29 Insulin-induced gene 1
∗Note: the standard nomenclature for rainbow trout according to GBrowse-2.54 of rainbow trout genome project database.

PPAR-𝛼 expression were different from Kolditz et al.’s results
on the divergent selection of lean and fat fish for muscle fat
content by cDNA microarray in rainbow trout [13]. In their
work, PPAR-𝛼 expression was lower in the fat line than in the
lean line. The differences between our results and the result
of Kolditz et al. might have been caused in part by different
ages of the fish and varying aquaculture environmental
conditions. Other potential reasons for the difference in
PPAR-𝛼 expression between the high and low fat content
fish in the two populations included the different histories of
the two populations. In addition, in contrast to PPAR-𝛼 and
PPAR-𝛽, the expression of PPAR-𝛾 in the liver was very low
and was not differentially expressed between the fat and lean
group, consistent with the expression level of PPAR-𝛾 gene in
liver tissue being only 10% to 30%of the level in adipose tissue
inmammals [34, 35] and similar to that in the chicken [36]. In
the current study, the gene expression of PPAR-𝛼 and PPAR-𝛽
was highly correlatedwith fat deposition, suggesting that they
were also key factors of fat accumulation in the rainbow trout
carcass.

Cytochrome P-450 is transcriptionally modulated by glu-
cocorticoid binding to glucocorticoid response elements in
the promoter region, playing important roles in the oxidative
metabolism of endogenous and exogenous compounds [37].
Cytochrome P-450 was detected to be more than 30-fold
higher expressed in the fat group than in the lean group
by transcriptome sequencing, and it was validated to be
nearly 20-fold higher by real-time RT-PCR. This result was
in agreement with the currently known oxidation-reduction
process of gene expression in the liver. The insulin regulated
lipid metabolism of fish does not seem to follow mam-
malian patterns; the insulin-like growth factors (IGFs) are
polypeptides with high sequence similarity to insulin, and

they are able to modulate lipolysis and lipogenesis in fish
hepatocytes [14–16, 38]. Insulin-like growth factor binding
proteins (IGFBPs) regulate the biological functions of IGFs,
and IGFs can stimulate the growth ofmultiple tissue cell types
[39]. In the current study, the gene expression of two IGFBP
isoforms and gene expression of INSIG1 were differently
expressed between the lean and fat fish groups, suggesting
potential roles of insulin and insulin-like growth factors in
lipid storage or utilization of fat accumulation in rainbow
trout.

In total, many functional genes involved in lipid and
carbohydrate metabolism might contribute to phenotypic
variations in carcass fat content, and they were found to be
expressed in both high and low carcass fat content fish groups.
However, some of these genes were expressed significantly
different between these two groups. On the one hand, this
phenomenon could partly occur because of potential positive
genetic correlation between growth traits and carcass fat
content and the growth traits being under strong artificial
selection in this experimental population. On the other hand,
there was a large difference in the group mean of carcass fat
content between the lean and fat groups, suggesting that the
dynamics of genetics effects and the gene expression mode
might be influenced by genetic heterogeneity between the
lean and fat groups.

4.2. Metabolic Process Related to the Difference of Carcass Fat
Content Based onGOEnrichmentAnalysis. TheGOapproach
could help to predict the functions of genes based on the
existing architecture and prior knowledge of molecular bio-
logical mechanisms for nonmodel organisms. In the present
study, a large number of functional genes were significantly
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enriched in lipid and carbohydrate metabolism related GO
terms, such as GO: 0006629 (lipid metabolic process),
GO: 0006006 (glucosemetabolic process), GO: 0019318 (hex-
ose metabolic process), and GO: 0005996 (monosaccharide
metabolic process), which was consistent with liver being
an important tissue in the biological process of lipid and
carbohydrate metabolism and metabolic energy balance. In
detail, we identified 52 differentially expressed transcripts
significantly enriched in the lipid metabolic process (GO:
0006629) and 20 differentially expressed transcripts sig-
nificantly enriched in the glucose metabolic process (GO:
0006006). In farm animals, fatty acids and glucose are
the two main metabolic substrates oxidized by animals for
energy production. The mobilization of fat stores could be
decreased by glucose, using both inhibiting lipolysis and
stimulating primary reesterification approaches. Our results
were consistent with this information and also suggested
that the expression and regulation of lipid and carbohydrate
metabolism genes should play key roles in the ontogenesis of
carcass fat content in rainbow trout.

4.3. Consistency between Transcriptome Sequencing and Real-
Time RT-PCR. As is known, transcriptome sequencing and
real-timeRT-PCR analysis are both powerful tools for obtain-
ing a view of gene expression. However, quantifying gene
expression by sequencing and real-time RT-PCR is not nec-
essarily consistent. Although much meaningful information
can be obtained from transcriptome sequencing alone, this
technology still has limitations in accuracy and in fairness
for RNA-seq data processing [40]. Although fold changes
were different for some genes between these twomethods, all
fourteen of the genes detected by real-time RT-PCR attained
significant levels of differential expression (𝑝 < 0.05),
conferring robustness to our transcriptome dataset.

5. Conclusion

In this study, the transcript expression profile of the liver
tissue in rainbow trout was investigated comprehensively
using RNA sequencing and was confirmed by real-time RT-
PCR. A total of 1,694 transcripts were differentially expressed
between high and low carcass content fish group. Evidence
presented in this study indicated that lipid metabolic process
in liver may be related to the difference of carcass fat content.
The relevance of PPAR-𝛼 and PPAR-𝛽 as molecular markers
for fat storage in liver commands further investigation.
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